Categorical Abstract Algebraic Logic: Leibniz Equality and Homomorphism Theorems

نویسنده

  • George Voutsadakis
چکیده

The study of structure systems, an abstraction of the concept of firstorder structures, is continued. Structure systems have algebraic systems rather than universal algebras as their algebraic reducts. Moreover, their relational component consists of a collection of relation systems on the underlying functors rather than simply a system of relations on a single set. Congruence systems of structure systems are introduced and the Leibniz congruence system of a structure system is defined. Analogs of the Homomorphism, the Second Isomorphism and the Correspondence Theorems of Universal Algebra are provided in this more abstract context. These results generalize corresponding results of Elgueta for equality-free first-order logic. Finally, a version of Gödel’s Completeness Theorem is provided with reference to structure systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Categorical Abstract Algebraic Logic: Partially Ordered Algebraic Systems

An extension of parts of the theory of partially ordered varieties and quasivarieties, as presented by Paaasińska and Pigozzi in the framework of abstract algebraic logic, is developed in the more abstract framework of categorical abstract algebraic logic. Algebraic systems, as introduced in previous work by the author, play in this more abstract framework the role that universal algebras play ...

متن کامل

Categorical Abstract Algebraic Logic: Subdirect Representation for Classes of Structure Systems

The notion of subdirect irreducibility in the context of languages without equality, as presented by Elgueta, is extended in order to obtain subdirect representation theorems for abstract and reduced classes of structure systems. Structure systems serve as models of firstorder theories but, rather than having universal algebras as their algebraic reducts, they have algebraic systems in the sens...

متن کامل

Categorical Abstract Algebraic Logic: Compatibility Operators and Correspondence Theorems

Very recently Albuquerque, Font and Jansana, based on preceding work of Czelakowski on compatibility operators, introduced coherent compatibility operators and used Galois connections, formed by these operators, to provide a unified framework for the study of the Leibniz, the Suszko and the Tarski operators of abstract algebraic logic. Based on this work, we present a unified treatment of the o...

متن کامل

Categorical Abstract Algebraic Logic: Compatibility Operators and the Leibniz Hierarchy

A unified treatment of the operator approach to categorical abstract algebraic logic (CAAL) was recently presented by the author using as tools the notions of compatibility operator of Czelakowski, of coherent compatibility operator of Albuquerque, Font and Jansana and exploiting an abstract Galois connection established via the use of these operators. The approach encompasses previous work by ...

متن کامل

Categorical Abstract Algebraic Logic: Closure Operators on Classes of PoFunctors

Following work of Pa lasińska and Pigozzi on partially ordered varieties and quasi-varieties of universal algebras, the author recently introduced partially ordered systems (posystems) and partially ordered functors (pofunctors) to cover the case of the algebraic systems arising in categorical abstract algebraic logic. Analogs of the ordered homomorphism theorems of universal algebra were shown...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied Categorical Structures

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2006